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W
ith the growth of the non-
agency mortgage market and
the current focus on subprime
mortgage losses, finding fair

economic value in credit sensitive mortgage-
backed securities (MBS) is now a crucial ingre-
dient in the functioning of the capital markets.
About a decade ago, credit modeling first gar-
nered the attention of the academic world with
applications to corporate liabilities when
leading researchers, known for their work in
asset pricing, options, and interest rates,
switched their focus to modeling credit events
(see Duffie and Garleanu [2001]).

Development of MBS modeling has tra-
ditionally been delegated, with few excep-
tions, to practitioners. Mortgage modeling
generally involves both theoretical and empir-
ical analysis because borrower behavior cannot
be determined by theoretical considerations
alone. Modeling defaults and losses in mort-
gage pools demands more data than just fore-
casts of prepayments and is most accurately
predicted at the loan level.

Until recently, the primary holders of
credit risk in the mortgage market were the
government-sponsored enterprises (GSE)
Fannie Mae and Freddie Mac, depository insti-
tutions through their lending and portfolio
activities, and mortgage insurance companies.
Credit modeling was performed at these insti-
tutions and at the major rating agencies. The
credit models, with the exception of those of

the GSEs and mortgage insurance companies,
generally focused on setting loan loss reserves
and capital levels rather than the fair value of
credit sensitive instruments. In recent years,
however, several major Wall Street firms and
independent analytical firms have built credit
valuation models.

The MBS investor, the risk-bearing party
in the non-agency securities market, has had
to rely almost entirely on external modeling
efforts. For example, an AA-rated MBS tranche
investor would employ the discount spread
commonly used in the AA fixed-income market
and apply it to otherwise loss-free cash flows
of the tranche. The ongoing 2007 mortgage
crisis highlights the problem of overreliance on
credit-rating labels and spreads. It appears that
AA and AAA ratings no longer offer the level
of protection they once did. Even if a reason-
able expectation of losses does not trigger the
write down of a senior tranche, further dete-
rioration in market conditions might. Davidson
[2007] describes the mechanics and flaws of
mortgage origination, underwriting, and invest-
ment as well as the roles of all parties involved
in the crisis.

Two important points should be raised.
First, the investor has to do his homework by
obtaining the collateral data, forecasting delin-
quencies, defaults, and losses, and deriving
economic values. Second, a single baseline
forecast does not earn an “A”; the MBS and
asset-backed securities (ABS) markets value
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tranches by considering all possible, even perhaps remote,
losses. We discuss this aspect in the next section and show
why a stochastic model is necessary to explain market
prices.

THE NECESSITY OF STOCHASTIC 
MODELING OF LOSSES

In this section, we provide a few examples from the
mortgage industry that illustrate why the entire proba-
bility distribution of losses is required in order to find the
economic value of financial instruments.

Default Option Modeling

Much like a prepayment, a loan default is an option.
A borrower who finds himself in a grim financial situa-
tion and unable to make his mortgage payments, can
either sell his house or walk away from his mortgage. The
decision depends largely on the amount of the borrow-
er’s equity in the home which is a function of the home
price. A default can be viewed as a put option on the
property and a refinancing as a call option on the loan.
Given the optional nature of default, default rates and
losses depend nonlinearly on home prices. Like the refi-
nancing option, the default option is not exercised effi-
ciently and its laws can best be seen through the prism of
empirical modeling. Common refinancing patterns sug-
gest negative convexity of MBS prices with respect to
interest rates. We assert positive convexity of losses (neg-
ative convexity of prices) with respect to home prices.

What follows from this option-like argument is that
the expected default rates and losses in a cohort of loans
cannot be accurately assessed using a single forecast. Exam-
ples suggest that the understatement of loss expectation
when making projections using a static framework can
be large.

Asset-Backed Securities

Let us assume that an asset-backed securities (ABS)
deal (backed by subprime mortgages or other insecure
loans) is composed of three tranches or classes: a senior
tranche, mezzanine tranche, and junior tranche. Suppose
that the credit enhancement structure protects the junior
tranche up to 10% of collateral loss, mezzanine tranche
up to 20%, and senior tranche up to 30%. This means
that a collateral loss of, say, 5% will not spread into these

three classes, but will be absorbed by subordinate classes.
A 15% collateral loss will considerably reduce cash flow
to the junior tranche (up to its total principal write-down),
but will not cause any loss in the mezzanine and senior
classes. A 25% loss may cause full principal write-downs
on all but the senior tranche, and so forth.

At first glance, all an investor needs to know is a single
number—the projected collateral loss. The market prices
of all tranches, however, are somewhat discounted for losses,
albeit to various extents. No single loss scenario can explain
the market values across the capital structure. This mys-
tery disappears if we reframe the loss as a random number.
Instead of assuming that the loss can be an either 5%, 15%,
or 25%, we can instead assume a certain probability asso-
ciated with a particular loss scenario so that each is subject
to a probability distribution. This randomness can be easily
attributed to both market factors (described in the next
section) and with model uncertainty.

Gauthier [2003] suggests recovering the loss distri-
bution using market prices across the credit structure.
Suppose we have a grid of loss scenarios, ranked from
lowest to highest. Each loss level results in a set of prices
across the tranches of the ABS. Next, we determine the
loss probability that best equates the weighted average
price for each of tranches of the ABS with the actual
market price. This method is a low cost approach because
it requires no loss modeling and recovers a probability
distribution of defaults and losses from directly observed
market prices. As attractive as this method appears, it out-
sources the modeling effort and takes for granted the pre-
vailing market view. For example, in fall 2007, ABS prices
were unstable suggesting that market makers had lost
firm views on future losses. The Gauthier model also
requires the user to construct each scenario grid point by
somewhat arbitrarily linking losses to prepayments and
delinquencies, and expressing them as time-dependent
vectors. Of course, the timing of prepayments and losses
is also important, but they cannot be accurately predicted
without modeling.

Mortgage Insurance, Guarantees, 
Losses, and Capital Requirements

The insurance industry requires the protection seller
to maintain capital sufficient to cover all possible losses.
The potential physical loss on a property thus represents
only part of the insurance coverage and premium. The
additional capital that must be maintained to cover losses
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above the anticipated level only earns the risk-free rate
which then leads to the imposition of a capital charge. The
amount of this charge depends on the loss distribution,
protection depth, and desired return on capital. Even if
losses above the stated coverage are highly unlikely, the
capital charge will depend on the coverage. The GSEs
are expected to offer the largest premium because they
provide full protection against loss.1

A similar argument applies to other participants in
the MBS market. For example, credit default swap (CDS)
protection sellers are insurers of ABS tranches rather than
insurers of loans. Mortgage originators that keep unse-
curitized mortgage loans on their balance sheet set aside
a so-called reserve for losses. In one of the following sec-
tions, we will present details to better quantify this
problem. In essence, we will show how financial business
logic contributes to the definition of the price of risk and,
thus, to the concept of the risk neutrality of losses.

Exposure to Interest Rates

Default and loss rates cannot be considered inde-
pendent of interest rates. Historical analysis points to a
negative correlation between mortgage rates and the sys-
tematic component of home price appreciation (HPA).
This suggests that losses in MBS pools should rise and fall
with interest rates. Hence, the interest rate exposure of
subprime MBS and ABS is different from the exposure
established without credit modeling. The negative rela-
tionship between HPA and interest rates may look both
counterintuitive and contradictory to simple statistical
measurements. We discuss this topic later in the article.

Is the Loss Stream an IO or a PO?

When a loss model is replaced by “equivalent” dis-
counting, an assumption is being made that the loss stream
looks like an interest-only strip (IO). Indeed, an annual
loss at a constant rate of 1% of the remaining principal is
equivalent from a pricing standpoint to an additional dis-
count spread of 100 basis points (bps). We previously
mentioned that if rates change, losses would change too,
so the usual option-adjusted spread (OAS) method does
not provide an accurate rate exposure. However, are losses
truly an IO?

If part of the collateral pool is already severely delin-
quent, it will likely go through foreclosure regardless of
the interest rate. Hence, a loss stream of this kind resem-

bles a principal-only strip (PO), not an IO. Furthermore,
unlike a PO, the liquidation time is not driven by interest
rates. Therefore, the loss stream of a severely delinquent
loan looks more like a portfolio of zero-coupon bonds
with a duration of 0.5–1.0 years than the typical dura-
tion range of an IO. In order to capture interest rate expo-
sure correctly, a good model must relate the nature of
losses to the delinquency composition of the collateral.

FACTORS AND INGREDIENTS 
OF CREDIT OAS

The concept of Credit OAS refers to an extension
of the OAS method that involves an explicit model of
credit events such as delinquencies, defaults, and losses
and their influences on cash flow. In other words, instead
of generating a loss-free cash flow for an MBS and dis-
counting it with a purposely inflated credit spread, we
delve into full credit modeling of the underlying collat-
eral. For structured deals, the losses are translated into a
tranche’s write-downs and interest shortfalls. The cash
flows generated this way are then discounted using a dis-
count rate plus an OAS that is similar in level to an OAS
of credit-perfect instruments.

A well-designed valuation system should employ
random factors that follow risk-neutral dynamics. In our
case, randomization of future events must include pre-
payments, defaults, losses, rate resets, and deal triggers.
Specifically, market randomness leads to the probability
distribution of the losses. Yet, subjective views of these
probabilities by a particular empirical modeler will rarely
generate accurate market prices. Empirical modeling, fair
or biased, lacks the market price of risk. As in the mort-
gage insurance example, the expected loss is only part of
the insurance premium. This leads to the problem of
defining the risk-neutral conditions imposed on the fac-
tors’ behavior which we will be discussing throughout
this article.

Market factors employed in this modeling process
include, but are not limited to, interest rates. Interpreta-
tion of the default option as a put on property suggests
that a relevant home price indicator (index) must also be
included. Another good candidate is the unemployment
rate because borrowers who lose their income are likely
to become delinquent on their loans. For example, a
Deutsche Bank model presented by Patruno, Ilinic, and
Zhao [2006] employs a joint simulation of these three
factors. But even with a long list of relevant economic
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factors, and even if they are all known, the default rate and
losses could only be approximately predicted. This simple
example illustrates that a model’s systematic error (bias) is
itself an important risk factor. The market does not need
to price random oscillations of outcomes around modeled
forecasts because they are diversified over time. Neither
should the deviations of a single loan’s behavior from the
average be a concern, because they are diversified in large
pools. Instead, what should concern investors is the risk
that a model systematically understates the default rate
and losses.

In our work at Andrew Davidson and Co., Inc., we
consider it most practical to use interest rates and home
prices as key factors in Credit OAS. We clearly realize the
need to employ a risk-neutral model for prepayments,
defaults, and losses, but this goal can and should be reached
via alteration of a reasonably well-designed empirical
model. The argument made in our work on prepayment
risk neutrality (Levin [2004] and Levin and Davidson
[2005]) is that a risky return generated by any factor can
be exactly replicated by altering the factor’s drift (or value).
Therefore, a risk-neutral transformation can be accom-
plished via the model’s “tuning” to market prices of MBS
benchmarks.

All OAS systems designed for MBS use some type
of risk-neutral models of the interest rate term structure.
Term structure modeling is a well-developed area of finan-
cial engineering. A good model should be calibrated to
market instruments (rates and options) that are relevant to
MBS funding and optionality. We focus the remainder of
this section on three ingredients of Credit OAS that are
required beyond the traditional OAS approach: a home
price index (HPI) model, model for defaults and losses,
and specifics of valuation computations.

Home Price Appreciation Model

A stochastic home price appreciation (HPA) model
based on historical data from the U.S. Treasury Depart-
ment’s Office of Federal Housing Enterprise Oversight
(OFHEO) was described in Levin [2006] and was built
using a dynamic asset model as a prototype. Let us assume
that a home price index (HPI) is analogous to a stock
or stock index. It is random but continuous, and its
return rate contains a systematic component (drift) and
white noise (volatility). Hence, we begin by modeling
the HPI return rate, i.e., the HPA rate. Exhibit 1 depicts
visible negative correlation between the systematic part

of the U.S. HPA rate published by OFHEO and a long
market rate which in this case is the 10-year Treasury
bond.

The HPA rate features volatility which we term
“jumps.” Note that jumps is a practical term used simply
to describe white noise observed in discrete time and is
mathematically unrelated to Poisson jumps with random
arrival. Exhibit 1 suggests that the HPA rate is indeed
analogous to a stock’s return. We can postulate that the
U.S. HPA rate can be generated by a dynamic stochastic
model which includes three main components: the interest
rate component which indicates housing affordability, dif-
fusion which is associated with other economic factors,
and jumps in the returns of the housing stock. More for-
mally, in continuous time,

(1)

In Equation (1), R is the key interest rate, k and σHPA are
positive constants, and HPA∞ and R∞ are the historical aver-
ages for HPA and R, respectively. For each HPA(t) scenario,
HPI(t) is computed as HPI(t) = HPI(0)exp [ HPA(τ )dτ ].
Equation (1) includes a random disturbance (i.e., the white
noise WHPA) and a continuous random process D(t). The
latter can be a simple single-dimensional linear mean-
reverting process or, more rigorously, a two-dimensional
oscillator, linear or nonlinear. An oscillatory behavior lets
us view D(t) as a realistic demand–supply imbalance that rises
when demand exceeds supply and falls otherwise. A proper
set of initial conditions has to be provided for D(t). In the
single-factor case, the initial condition is just D(0). In the
two-dimensional version, both D(0) and the first deriva-
tive D· (0) are necessary to initialize the process, thereby
allowing us, to some extent, to capture both the forma-
tion and the bursting of a housing bubble.

We employ the Kalman filter algorithm to sepa-
rate the historical jump, diffusion, and interest rate com-
ponents as well as to identify the model’s optimal
parameters. When applied retrospectively, the filter is
able to estimate today’s value for (i.e., initialize) the dif-
fusion term. Exhibit 2 shows the three components of
the HPA rate in historical retrospective beginning in
September 1989.2

∫0
t

HPA t HPA k R R t( ) [ ( )]= + −∞ ∞
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σ
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The interest rate effect which indicates the afford-
ability of housing has been constantly improving. Because
the diffusion term is mean reverting our HPI model is
not a real world martingale, but it is capable of explaining
the inertial effect of both deficient and excessive housing
stock. To some extent, the model explains a housing price
bubble (e.g., note that the diffusion increased from 2004
to 2005 and fell rapidly in 2007). However, once this hap-
pens, the mean-reverting model always begins predicting
HPA recovery.

With properly selected parameters, the model cap-
tures well both overall HPA volatility and its relationship
to interest rates. We also like to view both D(0) and D(∞)
as convenient tuning parameters as well as factors of risk;
changing D(0) and D(∞) by the same amount may be
equivalent to shifting HPA∞. By altering these two para-
meters, the short-term dynamics and the long-term level
of HPA, respectively, can be changed; in particular, we can
employ this method to achieve a better understanding of
the risk neutrality of HPA. This approach will be employed
throughout the article.

Our HPA model possesses a few interesting prop-
erties. Each HPA measurement, regardless of how often
it is taken, contains a jump; hence the short-term uncer-
tainty of HPA is σHPA. The short-term expectation is
HPA∞ + k [R∞–(R(0)] + D(0); in particular, it is not equal

to the previous observation
which may contain the
jump. Long-term HPA
uncertainty includes the
standard deviations of
interest rates and of the dif-
fusion term. The model
purposely ignores an
explicit dependence on
economic factors other
than interest rates. Indeed,
should we decide to
include these factors we
would have to model
them, but this task would
be repetitive of introducing
the unnamed forces, white
noise WHPA and diffusion
D.

Modeling subprime
deals backed by geographically dispersed collateral may
require constructing geographical HPI models for states
and even metropolitan statistical areas. We have reviewed
several practical methods of achieving this goal. One
method, the Alpha-Beta approach, views the relationship
between states and the U.S. as that of stocks to an index.
It captures well the regional exposure to U.S. home prices,
but leaves open the question of modeling states that have
large idiosyncratic volatility.

Another method, principal component analysis
(PCA), traces geographical home prices to one to two
additional random variables which can be extracted math-
ematically from the regional HPA time series. Our analysis
has shown that, after accounting for the U.S. HPI, the
second component can be interpreted as economic swing,
or the difference between dense economic centers and
areas with available land.

Modeling Defaults and Losses

Along any interest rate and HPI trajectory, we can
assess a borrower’s incentive to refinance and propensity
to default. The refinancing option’s moneyness is primarily
driven by interest rates and, to some extent, by the amount
of a borrower’s equity, which impacts his ability to cash out.
The default option and loss severity depend primarily on
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the loan-to-value ratio (LTV), which
is driven by the HPI scenario. A loan
having a 95% LTV at origination
becomes a 105% LTV loan if the
home price drops 9.5% after origi-
nation. Once the amount of debt
exceeds the market value of the asset,
the homeowner may stop paying his
mortgage if he finds himself in dif-
ficult financial circumstances. In this
example, such an action would lead
to a minimum 5% loss. A worse HPI
scenario would result in a higher
probability of default and a higher
loss. A borrower who can refinance
his mortgage loan may avoid the path
to default. Hence, the default
option’s exercise depends also on the
level of interest rates.

Refinancing and default are
functions of both interest rates and
home prices. Therefore, a good
model should simulate them con-
currently and, in particular, should
consider factors affecting both deci-
sions. Interestingly enough, it
appears that, while agency MBS pre-
payment models traditionally revolve
around averaged pool characteris-
tics, a good prepayment model for
subprime MBS requires information
about LTV, credit score, loan pay-
ment status, and other loan-level
details typically employed for credit
modeling. At Andrew Davidson and
Co., Inc., we have developed a
model, the LoanDynamicsTM model
(LDM), which simulates concur-
rently the prepayment, delinquency,
default, and loss severity rates along
every scenario of interest rates and
home prices. The LDM was named
in recognition of the transitional
framework employed in its design.
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The LDM assumes that every loan can be “cur-
rent” (C, normally paying), “delinquent” (D, 60–150
days late), “severely delinquent” (S, over 150 days late),
or “terminated” (T, the exit state). The derivation of the
transitional probabilities as functions of loan characteris-
tics and market data represents the essence of the mod-
eling approach. For example, the delinquency process
(i.e., the transition from C to D) depends largely on the
credit score (FICO), documentation, and spread at orig-
ination (SATO), which serves as additional evidence of a
borrower’s creditworthiness.3 The simulated LTV affects
the ability of delinquent loans to cure, or prepay without
loss, as well as impacts the degree of loss severity. Loan
characteristics such as borrower documentation, lien posi-
tion, loan purpose, property type, mortgage insurance,
and geographical location are additional static modeling
inputs. The LDM transitions can be mapped into the
Bond Market Association (BMA) standards to produce
traditional measures for delinquency and default rates.

This few-state transitional model has some advan-
tages over other methods used in MBS credit modeling.
First, it is economical in size and includes processes that
are directly and unambiguously observed from each loan’s
essential status change. In contrast, the BMA definition
of defaults refers to loans that stop paying and never
recover; such a process cannot be measured in real time.
Second, the LDM lets us employ the known initial con-
ditions of loan status. A seasoned pool’s composition at
time zero (C-D-S) is certainly an important ingredient in
forecasting future delinquencies and defaults.4 Finally,
unlike commonly used standards that set hard restrictions
on the time to terminate, such as 6 or 12 months, all
LDM transitions (including termination) are random.
While the exact time in each state is unknown, the average
time is inversely related to the probability of leaving the
state. For example, the average time to terminate a severely
delinquent loan is equal to 1/Prob(S->T). More details
about the LDM are described by Lundstedt [2007].

Setting Up Credit OAS Calculations

Once we define a risk-neutral evolution Q of interest
rates and home prices along with cash flows, CF(t), which
are contingent upon these processes, the economic value
of a T-maturity instrument becomes

(2)P E CF t r crOAS d dtQ T t
= − +



∫ ∫( ) [ ( ) ] }exp{

0 0
τ τ

where crOAS is Credit OAS (i.e., the residual discount
spread). The variable crOAS does not carry credit risk
because we explicitly impair the cash flow; it is merely a
measure of liquidity or mispricing. Calculations of eco-
nomic values using crOAS, as well as iterating for crOAS
using known prices, is done via Equation (2). Instruments
traded at a wider crOAS are generally considered cheap.
Exposure to interest rates and HPA rates will be measured
using constant crOAS.

Let us transform Equation (2) through measures
often associated with MBS modeling. We assume that an
MBS or an ABS pays coupon c(t), amortizes at a total rate
of λ(t) (which accounts for both prepayments and defaults),
and experiences a principal-loss rate of d(t) measured off
the remaining balance with all occurring continuously.
Then Equation (2) can be integrated by parts in a way sim-
ilar to that shown in Levin [1998]:

(3P)

If we carefully inspect this result, it can be inter-
preted as the pricing formula for a regular non-amortizing,
non-defaulting bond that pays the coupon of c + λ – d in
the economy functioning under a r + λ risk-free rate.
Therefore, amortization rate λ(t) is additive to both the
paid rate and the discount rate, whereas the loss rate d(t)
is subtracted from the paid rate as we would expect.

A bond will be valued at par regardless of interest rates
and amortization rate if it pays a perfect floater, c = r + m,
indexed to the short rate r with the margin m exactly
equal to the expected loss rate d plus crOAS. This is true
for the majority of ABS deals at origination. Once the
expectation of losses or liquidity (reflected in crOAS)
changes, the bond will be valued at a premium or dis-
count which becomes a function of interest rates and
amortization.

The loss stream itself is valued at

(3L)

If all the rates are constants and the instrument is
in perpetuity, then the integrals are taken easily:

L E d t r crOAS d dtQ tT
= − + +

 ∫∫ ( )exp{ [ ( ) ( )] }τ λ τ τ
00




P E c t r t crOAS d t

r c

Q T
= + − − −

− +

∫1
0

[ ( ) ( ) ( )]

exp{ [ ( )τ rrOAS d dt
t

+∫ λ τ τ( )] }Ä
0
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VALUATION MODEL RECIPES

The number of mathematical states that describes
interest rates, home prices, cash flows, and the credit
model is rather high which makes random simulations
the only candidate for a Credit OAS pricing scheme. The
number of random forces is limited to those driving
interest rates, the HPA diffusion, and the HPA jumps. For
example, the use of a single-factor term structure model
will ultimately require the concurrent simulation of three
random shocks. Because many ABS have a complex struc-
ture and complex cash flow rules, and are backed by het-
erogeneous collateral groups, realistic applications of the
Credit OAS method severely limit the number of paths.
We have found a few recipes that are tested and have been
proven useful, but many others have been tried with mixed
results.

Path “Fudging” instead of antithetic reflection. Using
rudimentary theoretical information, such as the knowl-
edge of market discount factors, artificial adjustments can
be added to the random processes to “center” them on cor-
rect values. Consider, for example, a Monte Carlo method
for interest rate derivatives. Adding a “fudge” factor to
the short-rate paths to ensure exact values for the discount
factors is a simple and effective technique. Similarly, adjust-
ments can be made to long rates and shocks generated for
the HPA diffusion and jumps.

We consider this method superior to traditional anti-
thetic reflection because it does not double the number
of random paths. Furthermore, we can correct the inac-
curacy in an explicit way related to the financial applica-
tion. In contrast, antithetic reflection of interest rate paths
does not ensure exact discounting.

Ortho-normalization of random shocks. If shocks are
scaled to 1.0 and made orthogonal to each other, we can
ensure that random paths follow the correct volatility pat-
terns, a critical element in option pricing. This technique
can be classified as moment matching (Glasserman [2004]).
We first start with random numbers and then apply the
Gram-Schmidt method to transform them into properly
scaled, serially independent samples. All the second
moments, variances and covariances, exactly match theo-
retical levels. Although the shocks used to generate interest
rates, the HPA diffusion, and the HPA jumps are uncorre-

P
c d

r crOAS
L

d

r crOAS
=

+ −
+ +

=
+ +

λ
λ λ

,
lated, the HPA process is, of course, linked to the interest
rate process by construction. Our simple MBS pass-though
tests show that ortho-normalization doubles Monte Carlo
accuracy and stabilizes conversion.

Seed shuffling. If all that is needed is an assessment
of the expected loss or price of a large loan portfolio (not
a collateralized mortgage obligation, or CMO), there
exists a very simple and effective method—use a few
Monte Carlo paths per position and start each position’s
run from random seed. It turns out that from a portfolio
standpoint this approach is equivalent in accuracy to many
independent Monte Carlo runs. Efficiency depends on
the homogeneity of the loans. Imagine, for example, that
the collateral pool is composed of 1,000 perfectly iden-
tical loans. Running two random paths per loan, seeded
randomly, is equivalent to running 2,000 random paths
from a portfolio standpoint. In contrast, running two
random but identical paths per loan is no different than
running only two paths for the portfolio. Even if the loans
are somewhat heterogeneous, using random seeding
instead of same seeding will be just as accurate for each
loan and more accurate for the portfolio. Furthermore,
if the collateral is composed of one million loans (rather
than one thousand), we might even extend our faith in
Monte Carlo and instead of running two randomly seeded
paths per each loan, apply them to a few thousand ran-
domly chosen loans.

In Exhibit 3 we demonstrate that using a few different
paths per loan allows us to assess the price of losses rather
accurately for both fixed-rate and adjustable-rate (ARM)
groups of the subprime CW0708 deal issued by Coun-
trywide. In contrast, using a few identical paths for each
loan is less accurate.

The few-paths random-seed method benefits from
error diversification, much like investing in many inde-
pendent stocks. It also suggests that the typical dream of
senior management to have every position priced consis-
tently against the same set of paths will likely reduce the
accuracy in risk measurement, without benefits. Unless
positions need to be accurately valued versus each other
(e.g., asset versus hedge or specified pool versus TBA),
using same paths for every position is not advantageous.
When measuring duration, convexity, and other greeks,
we must keep the initial seed unchanged, but should
change it when moving from one position to another.

Loan clustering. Running a structured deal using a
loan-level Monte Carlo simulation is not a practical
approach. Even if the best assessment of losses and their
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distribution requires loan-level modeling, a direct sto-
chastic simulation of such a model is prohibitively long.
Instead, we can employ a single market scenario to com-
pute prepayments, default rate, and losses for every loan.
Using these measures (scores) we can then cluster loans
so that they are grouped into a few internally homoge-
neous clusters. In a very simple case, we can use the loan
loss score and create two loan groups: active and passive.

Clustering is a field that lies between computer sci-
ence and statistics. It employs both established theoretical
facts and proven numerical processes (typically, iterations).
For example, the optimal solution is such that each loan
is closer to its own center (centroid) than to other cen-
ters. Our preliminary study, which is beyond the scope
of this article, proves that using only two loan groups clus-
tered by a loss score derived from a simple static analysis
is a reasonable method. For example, if we ran a full Monte
Carlo with this two-group surrogate, we could assess the
collateral pool’s loss distribution with a suitable accuracy
rate of 3% to 5%. A three-group formation would pro-
duce a further improvement in accuracy, albeit a rather
modest one. In contrast, using only one cluster (i.e., the
single weighted-average repline) leads to an unsatisfacto-
rily large error of 20% to 25%.

WHERE DOES THE RISK-NEUTRAL
DISTRIBUTION OF LOSSES COME FROM?

Implied Versus Modeled Loss Distribution

A strong feasibility test for our method is its ability to
recover the market-implied distribution of losses. As previ-
ously mentioned, in order to assess the damage to any
ABS, the entire probability distribution of collateral has
to be known. We continue to use the CW0708 subprime
deal as an example of the analysis.

First, we attempt to recover the loss distribution
using tranche prices via the Gauthier [2003] scenario
grid method. We work with nine different classes, M1
through M9, priced by the market in May 2007. We then
construct 20 credit scenarios, ranging from ultimately
optimistic (no new defaults) to unreasonably pessimistic.
Our assumptions about prepayment scale and default and
loss severity rates for each scenario are somewhat arbi-
trary but appeal to financial intuition. For example, we
couple lower prepayment scales with higher default rates;
the exact definition of the credit scenario grid should not
materially affect our results. For each credit scenario, we

run a regular OAS model that incorporates stochastic
interest rates and prepayments, but we apply constant
default and loss severity rates. Because we account for
losses by altering cash flows, the OAS level we employ
should match that of agency MBS, adjusted for the appro-
priate liquidity difference. At the end of this step, we
compute the entire scenario-by-tranche pricing matrix
which is shown in Exhibit 4.

Next, we interpret credit scenarios as random with
probabilities that total 100%. Therefore, the price of each
tranche should equal the probability-weighted scenario
prices. Finally, we find an optimal probability distribu-
tion of the credit scenarios so that the computed prices
approximate market quotes as closely as possible. Instead
of assigning each scenario an independent probability
value, we prefer to parameterize the distribution using the
Vasicek loss model [1989, 1991]. This is a two-parameter
skewed distribution derived to depict default rate proba-
bility in an infinite pool of identical loans. Exhibit 4 shows
the optimal probability. Most tranches are reasonably close
to actual market prices (the average root mean squared
error is 0.43%).

So far, our exercise has not involved the method of
Credit OAS because we simply inferred losses from bond
prices. Let us now apply the Credit OAS method and
measure the loss distribution it generates. We are inter-
ested, moreover, in changing the characteristics of the
HPA model in such a way as to approximate the distrib-
ution shown in Exhibit 4. Remember that parameters
D(0) (short-term forecast) and D(∞) (long-term level)
can be viewed as tuning parameters as well as factors of
risk. For simplicity, we limit this feasibility study to finding
D(∞) only.

Exhibit 5 depicts the distribution of losses arising
from different D(∞). Observe that had we lowered the
long-term level of HPA to about 2%, the distribution of
losses would have approached the implied distribution.
This is an important result which attests to the validity of
our approach. In short, it means that at the time of analysis
a two-factor stochastic world presented an adequate market
view of the loss distribution. We could also have included
the short-term tuning factor, D(0); the volatility of the
jump component, σHPA; or any other parameter in the
HPA Equation (1) to match the implied loss distribution.

Having established the risk-neutral correction, we can
use it for other ABS deals. At first glance, a 2% long-term
HPA rate may seem low and almost impractical. But upon
closer inspection, it does not appear to be so outrageous.
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First, we expect the risk-neutral HPA assumption to be worse
than one based on empirical judgment; it must include the
price of risk, which we will quantify in the next section.
Second, our physical HPA model can be viewed as rather
optimistic because it is based on OFHEO historical data
which include only the conforming loan sector and exclude
foreclosure transactions, thus inducing an upward bias. Third,
we should attribute some of the 2007 market pessimism to
the short-term forecasts which we left unaltered in this case
study. Had we sought the best combination of D(0) and
D(∞), we would certainly have used a more optimistic D(∞).
The tuning recommendations, however, change with the
market (see our case study in the last section).

Capital Charge and Loss Distribution

In order to quantify the risk-neutral conditions and
link them to a financial rationale, let us consider the posi-
tions of loan insurer (limited insurance coverage), GSE
(unlimited insurance), and CDS protection seller. In any
case, a premium, p, should be charged to make the busi-
ness profitable. Without a doubt, the insurer must charge
more than the expectation of losses, µ, in the real world.
By definition, insurance provides protection against worse
than average events, so capital, c, must be maintained to
back the obligation. This capital must remain very liquid
and therefore can be expected to earn only the risk-free
rate, r, which is much lower than the return-on-capital
target, R. Let us assume that the standard deviation of
losses is σ and that the insurer must keep capital sufficient
to cover, kσ, in addition to µ.

The expected total return will reflect the (+) risk-
free return on capital, (+) guarantee fee, and (–) expected
claim µ:

(4)

under the constraint that the capital is large enough to
cover a worst-case loss,

(5)

From (4), the insurer is interested in charging p ≥ µ and min-
imizing the amount of capital that must be held. From
inequality (5), the minimal level of capital is c = µ + kσ – p.
If σ = 0, no capital is required, assuming p ≥ µ. There-
fore, we can present the capital requirement as a multiple
of the standard deviation, c = xσ. Then, replacing p – µ
with (x – k)σ in formula (4), we get

(6)

The sequence of computations using formulas (4)
through (6) is as follows. First, we select the underlying
financial instrument, either the agency guarantee, mort-
gage insurance, or CDS. Assume that R is the desired
expected ROE. Equation (6) defines the capital scale, x,

(7)

Let us find the premium rate, p, which results from
this consideration. Substituting c = xσ into inequality (5)
and treating it as an equality, we solve for p,

(8)p k
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Formula (8) is the insurance premium that minimizes the
amount of the insurer’s capital, given return target R,
insurance limit k, and the loss distribution pair (µ, σ).
The result is stated in the form of expected loss plus capital
charge. All measurements should first be carried as pre-
sent values, then translated into an annual fee dividing by
the annuity known as the IO multiple. The annualized p
is known as the guarantee fee, insurance premium, or
CDS rate.

Example:
Inputs: µ = 5 bps/yr, σ = 5 bps/yr, R = 25%, r = 5%,

k = 6.
Outputs: x = 5, c = 25 bps/yr, and p = 10 bps/yr,

50% of which is the expected loss and
another 50% is the capital charge.

Some observations follow immediately:

• Capital is proportional to k, the insurance scale. The
insurance premium, p, is linear in k.

• If the desired return rate, R, grows, then capital is
initially affected only minimally. The insurance pre-

mium, p, is almost linear in R. When R goes to
infinity, however, required capital vanishes and the
insurance fee converges to µ + kσ; that is, it alone
completely covers worst-case losses.

• The price of a unit of risk is . It equals 1
in the preceding example. Price of risk depends on
the risk-free rate, return target, and insurance con-
fidence. The level of insurance confidence will dif-
ferentiate insurance policies.

How does this economic reasoning relate to risk-
neutral market conditions? In the mortgage insurance
business (the underlying), equilibrium prices are formed
when insurers and clients agree on R and k, thereby
defining the price of risk, π. This defines the right side
of formula (8) which becomes the risk-neutral expecta-
tion of losses. In this case, ABS investments and CDS pro-
tections can be viewed as derivatives and valued using the
capital asset pricing model. Eventually, the market players
who take long and short positions agree on the price of
risk, π, although each makes his own estimate of R related
to the exposure of his position.

π = −
+ −k R r

R r1
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One important conclusion is that if an analytical
approach is needed to assess both the expected loss and
the capital charge, then the Credit OAS should deliver a
richer information output set than just the present value
of losses. In particular, the formulas in this section require
computing the path-wise standard deviation of losses.
Their direct use may be necessary to find the economic
value of illiquid financial instruments or when it is diffi-
cult to find an established benchmark market. If the con-
ditions of risk neutrality can be easily inferred from prices
of traded instruments, explicit knowledge of the values of
µ, σ, k, and so on is not required; it is enough to shift the
distribution of modeled market factors, like the HPA, to
match the price of losses shown in (8). This is the process
we followed in the previous section in order to find the
prices of the CW0708 tranches.

HPA Derivative Markets

One developing source of home-price risk neu-
trality is the real estate derivatives market. In 2006, the
Chicago Mercantile Exchange (CME) launched the
trading of futures and options using the S&P/Case-Shiller®

Home Price Index. The index employs the repeat-sales
method and is published monthly; the CME futures

mature quarterly. The
market includes a U.S. com-
posite and ten cities.

In September 2007,
another market was estab-
lished by way of the Radar
Logic Residential Property
Index™ (RPX), which
offers daily prices computed
on a per-square-foot basis.
This market started with the
trading of option-free con-
tracts (total return swaps)
having a maturity of up to
five years for the U.S. com-
posite and shorter maturities
for the 25 metropolitan
indices.

A number of major
brokers are involved in both
markets, along with ICAP,

the interdealer broker facilitating RPX trading. The HPA
markets (if they grow sufficiently large) can be used by
mortgage insurers, GSEs, ABS investors, CDS protection
sellers, and homebuilders to hedge exposure to home
prices as well as to speculate. In order to execute hedge
strategies, an HPA hedge ratio has to be calculated. Sim-
ilar to the case of interest rate risk, the Credit OAS method
should deliver all the relevant greeks. In particular, using
our modeling views on HPA, the instrument’s exposure
to D(0) and D(∞) must be assessed and employed for
taking an HPA hedge position. For example, our model
shows that losses in a typical subprime pool have a dura-
tion of five to ten years to the HPA level and about one-
third of that to the short-term HPA. This means that the
present value of losses can increase or decrease by 5% to
10% for each percent of the HPA level. The exposure is
positively convex and reflects the optionality of the bor-
rower’s default, that is, duration grows with losses. In
common ABS credit enhancement structures, this depen-
dence is highly nonlinear.
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A PRACTICAL ABS CASE STUDY 
(ILLIQUID MARKET)

We complete the article with a case study of the
SAS06BC4 subprime deal. The date of the analysis is
September 28, 2007, by which time the deal had accu-
mulated delinquencies of 5% and severe delinquencies of
9.5%. We analyze four tranches—A5, M2, M5, and M8—

with differing credit protection as well as an analysis of
the deal’s collateral pool. The protection for each tranche
had risen since origination primarily as a function of the
very low level of already accumulated collateral losses
(0.22%). Fairly large losses are obviously expected to occur
in the future given the impaired pool composition and
the fall or stagnation in home prices. Actual pricing quotes
were available for all tranches, although these prices should
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be viewed with caution due to the illiquidity of the market.
Nevertheless, we show how the Credit OAS method can
help to analyze the deal from many practical angles.

Valuation Surface

We start by computing the values of the instruments
using a crOAS of zero. This approach cannot lead us to
the actual prices because we are missing the liquidity
spread,5 but it lets us construct a value surface in the space
of two tuning factors in the HPA model—the long-term
diffusion, D(∞), and the initial diffusion level, D(0). Note
that for the same values, tuning factor D(∞) should gen-
erally be stronger than D(0) because the diffusion term
transitions rather quickly in the model. At the same time,
the short-term HPA rate is often more uncertain; for
example, balloon-bursting assumptions made by different
analysts and firms varied widely in fall 2007.

Exhibit 6 depicts the zero crOAS prices of the
instruments in the space of two HPA tuning factors (we
depict and compare only the collateral and the M8
tranche). The collateral value changes smoothly and
exhibits some negative convexity with respect to each of
the HPA factors. This observation agrees with the fact
that the borrower’s default is an option; positive convexity
might have pointed to a flaw in the model. It also means
that, had we resorted to the static valuation method com-
monly employed for credit analysis, we would have under-
stated collateral losses. The value of the M8 tranche
resembles a short position in digital options; that is, it is
negatively convex when the HPA is high (option is out
of the money) and positively convex when the HPA is
low (option is in the money). This is the direct conse-
quence of a typical credit enhancement within an ABS
capital structure. If ABS investors liked to hedge this expo-
sure, they might want to see the CME and ICAP to incept
digital home price options.

Getting to the Right Point

Now, we try to pinpoint the combination of D(0)
and D(∞) that best approximates market prices for the
M8 to A5 classes. It appears that we are less successful in
performing this calibration exercise than we were for the
May 2007 analysis of the CW0708 deal discussed earlier.
For example, we can easily match depressed prices for the
junior tranches (M5, M8), but a reasonable set of home
price tunings is not available to justify the pricing quotes
of the senior tranches (A5 quoted at 92.265 and M2
quoted at 75.425); both seem to maintain deeper actual
protection than the market quotes indicate.

A plausible financial explanation could stem from the
liquidity spread. Valuation using crOAS is bound to a
properly selected, similarly liquid benchmark. In the
illiquid ABS market, we may assume that part of the
pricing discount reflects an enormous bid-ask spread.
Thus, we can use the HPA tuning assumptions— –4.7%
of the long-term HPA rate and –11.5% of the short-term
HPA rate—that will result in reasonable liquidity spreads.
Given these assumptions, the expected collateral loss is
12.4% in present value terms; the expected losses for the
tranches are shown in Exhibit 7. The rest of the pricing
discounts will be absorbed by crOAS in recognition of
impaired liquidity. We compare the main valuation mea-
sures using two alternative methods: the regular OAS
method and Credit OAS. To compile the regular OAS
results, we run the same model with a zero loss severity
to ensure that total collateral amortization, both volun-
tary (turnover, refinancing) and involuntary (default), is
similar to that of the Credit OAS method.

The levels of crOAS appear to be wide, but plausible,
for the illiquid market (A5 has better liquidity). The most
stunning difference between the two methods is the pro-
jected interest rate sensitivity in that a duration of 50 years
is intimidating and unlikely can be proven by daily prices.
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It is merely a result of the strong relationship between
interest rates and home prices (k ≈2) in the HPA Equa-
tion (1). The results agree, however, with the notion of
lowering interest rates as a recipe to curtail the credit crisis.
Whatever the true OAD is, our analysis suggests it can vary
widely with HPA models and is unlikely to remain close
to the traditional measure.

CONCLUSION

The concept of Credit OAS revolves around cou-
pled simulations of interest rates and home prices and is
imperative to rationally explain prices of traded ABS,
CDS, and loan protections. The Credit OAS approach
requires a risk-neutral stochastic model of home prices,
a model of defaults and losses (theoretical or empirical),
and a rigorous and efficient valuation scheme. The risk-
neutral assumptions can be derived from concurrently
observed prices of ABS tranches throughout the credit
structure. An attractive alternative is to provide theoret-
ical premiums for GSE loan guarantees and mortgage
insurance based on expected losses and capital require-
ments. Once the risk-neutral evolution of home prices is
established, it can be used to price other credit-sensitive
instruments (derivatives).

The model can be employed for both liquid and
illiquid markets. Even distressed market prices can be
explained by a combination of modeled losses (under risk-
neutral interest rates and home prices) and a properly
selected credit OAS level (i.e., liquidity spread). The greeks,
however, will depend strongly on the modeling details
(such as the link between interest rates and home prices),
vary widely from model to model, and likely differ from
the measures computed using the traditional OAS approach.

ENDNOTES

The authors wish to thank Will Searle and Daniel
Swanson for their software implementation and integration
work. The LDM modeling work and its validation is due to Kyle
Lundstedt and Anne Ching.

1Part of the agency guarantee premium is related to the
liquidity advantage of the agency MBS.

2Our HPA model includes seasonality which is not shown
in Exhibit 2.

3The SATO can point to credit quality not observed in
other loan characteristics.

4At origination, all the loans are normally considered
current.

5The valuation surface can be constructed for any real-
istic crOAS level.
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