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I
ntensive developments in interest rate modeling have
delivered a bold but confusing model selection choice
to financial engineers, risk managers, and investment
analysts. Do these modeling issues sound familiar?

• Should a mortgage bank assess interest rate risk
using the lognormal Black-Karasinski [1991]
model or the normal Hull-White [1990] model? 

• Can a portfolio be hedged using different pric-
ing models for assets and derivatives?  

• Is there any historical evidence that one model
is better than another?

• What does the market think about the interest
rate distribution? (It must have some idea, or how
would interest rate options be traded?)

We show that selecting the best term structure
model is becoming more of a conscientious task than a
matter of taste. Recent historical rates, the implied volatil-
ity skew for swaptions, and general volatility levels confirm
rate normalization and reject the idea of lognormality. We
propose valuing mortgages using the Hull-White [1990]
model, which can be quickly and accurately calibrated
to both the yield curve and the swaption volatility matrix. 

LOGNORMALITY: THE OLD DAYS

Those who read research on how interest rates per-
formed in the 1980s and the early 1990s are accustomed
to the conjecture of lognormality. It is that interest rates
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are lognormally distributed; i.e., their logarithm is normally
distributed. The rates therefore cannot become negative,
and their randomness should be naturally and steadily
measured by relative volatility. This conjecture underlies
the validity and applicability of the Black-Scholes pricing
model to the interest rate option market. A good intro-
ductory treatment of the Black-Scholes model and the
notion of Black volatility can be found in Hull [2000].

Following Wilmott [1998], we will measure volatil-
ity by plotting the averaged daily increments versus the
rate level. We can collect all daily rate increments and store
them in “buckets,” each bucket corresponding to some
rate level. For example, a 7% bucket includes all daily
increments when the rate was between 6.5% and 7.5%.
After the data are collected, we average increments using
the root mean square formula applied within each bucket,
and then annualize them. Although the U.S. Treasury rates
are currently not the best benchmark for mortgages, they
have the longest history (Exhibit 1). 

In Exhibit 1, let us first disregard the bars and look
only at the line depicting historical volatility measured by

annualized deviations (right axis). The absolute histori-
cal volatility seems to be very much independent of rates
in the left half of the chart (west of 10%). When the rates
are in double-digits, the same absolute volatility measure
grows with the rate level. 

Now, reading the historical labeled bars, we conclude
that the absolute volatility has become rate-independent
since the late 1980s. This conclusion is generally con-
firmed by a similar analysis performed for the ten-year
swap rate history dating back to 1989 (Exhibit 2).

A weak or absent relation between absolute volatility
and rate level is a sign of normality rather than lognormality.
It also prompts quoting rate uncertainty (and therefore option
prices) in terms of absolute volatility (such as 110 basis points)
rather than relative volatility (say, 20%). Recently, many bro-
kers have begun communicating in exactly that way.

WHAT DOES THE SWAPTION MARKET THINK?

Can we recover the rate distribution from the way
interest rate options trade? A simple way is to measure the
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implied volatility skew, i.e., the dependence of the implied
Black volatility on the strike level. If market participants
believe in lognormality, there would be little reason for
the implied volatility to change with the option’s strike.
A volatility skew testifies against lognormality by the very
fact of its existence.

To discuss a simple skew measurement method, let
us first introduce a setup that generalizes many known and
popular single-factor models, a constant elasticity of vari-
ance (CEV) model:

(1)

where r is some modeled rate, s is the volatility coeffi-
cient, and g is the CEV constant. As usual, t is time, z(t)
is the Brownian motion that disturbs the market, and the
exact specification of the drift term is not very important
for our purposes.The CEV concept has no specific eco-
nomic meaning but can be viewed as a convenient way
to generalize and compare all known popular models.1

For g = 1, the absolute volatility is proportional to
the rate, and we have a lognormal model (with a properly

dr Drift dt r dz    = +( ) s g

selected drift term), such as Black, Derman, and Toy (BDT)
[1990] or Black and Karasinski (BK) [1991]. For g = 0, the
absolute volatility is rate-independent and can lead to a nor-
mal model, such as Hull and White (HW) [1990]. If g =
0.5, we may have a popular family of square root models,
such as the squared Gaussian model (SG) (see James and
Webber [2000]), or the model of Cox, Ingersoll, and Ross
(CIR) [1985]. Any unnamed values for the CEV are cer-
tainly possible, including negative values (hypernormality)
and values exceeding 1 (hyperlognormality).

Blyth and Uglum [1999] propose a simple method
of recovering the most suitable CEV constant by just
looking at the observed swaption volatility skew. They
argue that, if a swap forward rate satisfies the random pro-
cess (1), the skew should have the approximate form:

(2)

where sK and sF are the Black (i.e., proportional) volatil-
ities for the actual strike (K) and the at-the-money strike
(F), F is today’s forward rate, and K is the swaption strike.
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Let us analyze the same set of CEV special values,
0, 1.0, and 0.5. If g = 1.0, there will be no skew at all:
sK ∫ sF for any strike K. This is the Black-Scholes case.
For g = 0, the skew has a functional form of inverse
square root. For g = 0.5, it will have the shape of an inverse
fourth-degree root. It is worth mentioning here that each
inverse root function is a convex one, so the theoretical
skew should not be deemed a straight line (except when
g = 1). In fact, it should not be confused with a more
aggressive convex volatility smile that may or may not be
present in addition to the skew.2

The object of our study—the five-year into ten-year
swaption (5-into-10)—was selected with modeling volatil-
ity of mortgage rates and valuation of the prepayment
option in mind. Exhibit 3 depicts five skew lines plotted
for three named CEVs, the actual volatility observations
averaged from January 1998 through May 2002, and the
optimal fit line (g = 0.23) for the same period. The best
CEV is therefore found to be generally between the nor-
mal case (HW model) and the square root case (SG or CIR
models). It is also seen that low-struck options are traded
with a close-to-normal volatility, while high-struck

options are traded with a square root volatility. This phe-
nomenon may be a combination of a slight theoretical
smile and the broker commission demand.

Exhibit 4 illustrates historical month-by-month
skew, suggesting that the normalization effect (g ª 0) has
been observed since the beginning of 2001.

This CEV analysis unambiguously rejects lognor-
mality and reveals a more suitable model. Although the
best-fit CEV constant varies somewhat, any volatility
model between the normal one and the square root seems
to be a decent choice. Because of its analytical tractabil-
ity and the recent CEV trend, we focus on the HW
model as the chief alternative to the BDT or BK models.

VOLATILITY INDEX

It is useful to design a market volatility index—a sin-
gle number reflecting the overall level of swaption volatil-
ity deemed relevant to the mortgage market. This gives us
a convenient way to communicate with practitioners and
compare models; it can also serve as a risk assessment tool. 

We designate a family of at-the-money swaptions
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and, assuming no mean reversion, optimize for the sin-
gle short rate volatility constant s (volatility index) best
matching the swaptions’ volatility surface, on average.
This volatility index is model-specific; unlike some other
volatility indexes (such as the Lehman Brothers indexes),
it is not a simple average of swaption volatilities. The inter-
nal analytics of each model (exact or approximate) are used
to translate the short rate volatility constant into swaption
volatilities used for calibration. 

Note that this constant-volatility zero mean rever-
sion framework is used only to derive the volatility index.
It is not recommended for actual option-adjusted spread
valuation, where we strongly prefer the accuracy gained
by optimizing a time-dependent volatility function s(t)
and a mean reversion constant.

Exhibit 5 depicts the history of three volatility
indexes (sigmas) computed from the beginning of 2000
for the Hull-White normal model, the Black-Karasinski
lognormal model, and the squared Gaussian model. Each
index is calibrated to the same family of equally weighted
ATM swaptions deemed relevant to the mortgage mar-
ket: options on the two-year and the ten-year underly-
ing swaps with expirations ranging from six months to ten
years. We add for comparison a line for the seven-year rate
level, and scale all four lines so that they start at 1.0.

Exhibit 5 confirms a spectacular normalization of the

market; the volatility index constructed for the Hull-
White model has gradually become the most stable one.
For example, the swap rate plunged a good 60% between
January 2000 and June 2003, but the absolute volatility
index barely changed. The two other models have pro-
duced volatility indexes that follow the rate level but in
the opposite direction (the lognormal model does by far
the worst job). 

Interestingly enough, the squared Gaussian index was
stable for most of 2003 and could handle the rate plunge
to a new historical low (2.9%) in June 2003. This con-
firms that a square root volatility functional pattern may
outperform others when rates are very low.

These findings are consistent with the swaption skew
measures we have discussed. This is not a coincidence at
all. People who set the market for ATM swaptions are the
same ones who trade out-of- and in-the-money options.

OTHER PROBLEMS WITH LOGNORMALITY

Although the Black, Derman, and Toy [1990] and
the Black and Karasinski [1991] models have been the
bread and butter of option traders since they were devel-
oped, a full-scale implementation required for good mort-
gage analytics is not a simple task. 

Short rate lognormal models are not analytically
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tractable. For example, a Monte Carlo simulation, or any
other forward sampling method employed as the primary
mortgage pricing tool will simulate only the short rate pro-
cess on its own. Analytics that would map this process into
long rate dynamics (a mortgage rate) simply do not exist
and need time-consuming numerical replacements.

Relative (Black) volatility is used for quotation
only; it is merely a price-volatility conversion tool, not
requiring any acceptance of the Black-Scholes model. As
we have seen, volatility changes drastically with the level
of rates, and therefore with the expiration of traded
options. One constant number cannot describe the entire
universe of swaptions deemed relevant for mortgage pric-
ing. The BK model with constant volatility cannot be rec-
ommended, in view of a steep yield curve and a sharply
inverse proportional volatility term structure.

Contrary to common belief, long rates in the BDT
and the BK models are not lognormal, and generally are
less volatile than short rates, even in the absence of mean
reversion. This may be an unpleasant surprise for those

who think a 20% short rate volatility plugged into the
model results in a 20% swaption volatility. Therefore,
model calibration to the mortgage-relevant options (not
the options on the short rate) can be complicated.

THE HULL-WHITE MODEL: AN OVERVIEW

The short rate in the HW [1990] model is driven
by a linear stochastic differential equation, which is a spe-
cial case of the CEV Equation (1):

(3)

where a(t) denotes mean reversion, and s(t) stands for volatil-
ity; both can be time-dependent. Function q(t) is sometimes
referred to as arbitrage-free drift. That is, by selecting a
proper q(t), we can match any observed yield curve. 

Since (3) is a linear differential equation disturbed
by normally distributed Brownian motion, its output,
the short rate process, will also be normally distributed.

dr a t t r dt t dz      = - +( )( ( ) ) ( )q s
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Negative rates are not precluded. Although this fact is well
known (but never met with enthusiasm among practi-
tioners), there are many advantages in the model that
make up for this drawback.

The model is analytically tractable. For example, the
arbitrage-free function q(t) is expressed analytically through
a given forward curve. The average zero-coupon rates and
their standard deviations are also known for any maturity
and any forward time. (Many derivations of the HW and
other Gaussian models can be found in Levin [1998].)

Any long zero-coupon rate rT of arbitrary maturity
T is proven also to be normally distributed and linear in the
short rate; volatilities are related as

(4)

at any time t.
Function BT of maturity T plays an important role

in the HW model. It allows for calibrating the volatility
function s(t) to the option market. If mean reversion is
positive, then BT < 1, and the model allows for quasi-
parallel shocks, with rate deviations gradually depressed

Long-Rate Volatility
Short-Rate Volatility

  
  

  = - ∫
-1 e

aT
B

aT

T

along the curve. This feature agrees with the behavior of
absolute implied volatility for traded swaptions; it gener-
ally falls with the swap maturity. This observation there-
fore helps us calibrate mean reversion in the model. 

If a = 0, function BT becomes identical to 1.0,
regardless of maturity T. This important special case,
called the Ho-Lee [1986] model, allows for a pure paral-
lel change in the entire zero-coupon curve (every point
moves by the same amount). Such an opportunity can be
advantageous for standardized risk measurement tests. No
other model allows parallel shocks to be mathematically
consistent with its internal analytics.

Calibration to ATM Swaptions

Because the standard deviation of any zero-coupon
rate can be found explicitly for any bond maturity and any
forward time, it can be directly compared with quoted
Black volatility. Although market swaps are coupon-bear-
ing instruments, zero-coupon volatility analysis remains
quite accurate within the maturity range deemed relevant
for the mortgage market (up to ten years). Whether the
model operates with a time-dependent volatility function
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s(t) or a constant volatility parameter, s(t) ∫  s = const, it
can be optimized to approximate the volatility matrix of
traded ATM swaptions. This calibration procedure
includes finding the best mean-reversion parameter a in
the sense discussed above.

Exhibit 6 plots the calibration results using a series
of ATM options on the two-year swap and on the ten-
year swap as the input. The bars for six different expira-
tions show known volatility quotes converted into the
absolute form (i.e., the relative quote multiplied by the
forward rate).3

The overall effective error of calibration is just 3.6
basis points of absolute volatility, as measured across the
swaption matrix. The mean-reversion parameter was
restricted to be a constant; its best value is found as a =
2.05%. For some particular applications (like standardized
risk tests), one may prefer a zero mean reversion, or a con-
stant volatility parameter. These restrictions generally
reduce the calibration accuracy as shown in Exhibit 7.

Calibrated s(t) in Exhibit 6 is rather responsive to the
slope and the shape of the input volatility structure. It falls
sharply beyond the six-year horizon, perhaps as a result of
market perception about current versus long-term volatil-
ity. During the stormy market of the first half of 2002,
short-dated options were indeed traded at unprecedented
absolute volatility levels of 125-140 basis points, well above
their long-term averages. This was not the case in the calm
August of 1998, just prior to the Russian crisis (Exhibit 8).

Issues Related to Caps

We have demonstrated that the HW model can be
calibrated to traded swaptions. Would it be even easier to
use caps? After all, the function we seek, s(t), is the short
rate volatility function, and derivatives on short rates
(LIBOR) seem to be good candidates to examine volatility. 

Although many market participants perceive that
caps and swaptions trade in unison, they may overlook an
important modeling difference—the jumps. Long swaps
are chiefly diffusive, and a model disturbed by a Brown-
ian motion [like z(t) in Equation (1)] makes sense. Short
rates combine continuous diffusion (small day-after-day
changes) with sudden regulatory corrections. 

It is mathematically not very difficult to add jumps
to diffusion (Merton did it in 1976), but the equivalent
volatility term structure will become hump-shaped. Under
a jump or a jump-diffusion disturbance, the short-dated
Black volatilities come up considerably suppressed. 

Exhibit 9 compares market volatilities for traded
caps (solid bars) with volatilities of caps derived from the
swaption-fitted HW [1990] model. The model drastically
overstates short-dated cap volatilities, in both absolute and
relative terms. As the cap’s maturity extends, swaptions and
caps seem to converge. Can the cap (rather than the
swaption) volatility structure be plugged into a mortgage
pricing system? Perhaps so, if the system’s interest rate
model maintains the jump-diffusion setting. As develop-
ers of mortgage analytical systems traditionally do not do
this, the blind use of caps will understate volatility and
therefore the prepayment option value.4

We prefer using the swaption market for bench-
marking volatility, especially for fixed-rate mortgages.
Valuation of adjustable-rate mortgages may need additional
attention in view of embedded reset caps.

MBS VALUATION AND 
RISK MANAGEMENT IMPLICATIONS

Let us assume that the normal HW [1990] model
and the lognormal BK [1991] model are independently
calibrated to the ATM swaptions. They should value
ATM swaptions identically, but the volatility skew of the
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normal model (curve g = 0 in Exhibit 3) is quite unlike
the flat one for the lognormal model (g = 1). This means
the two models will value any option other than those
employed for calibration differently.

Since embedded mortgage options (prepayment,
ARM caps and floors, clean-up calls) are spread over time
and instruments, changing from the BK model to the HW
model will generally result in a change of values. Even
more important, the interest rate sensitivity measures will
change visibly—as a direct result of different volatility spec-
ifications. Under the BK model, every up move in rates
proportionally inflates the absolute volatility, thereby
reducing the modeled value of the mortgage-backed
security. This can be considered an indirect (via volatil-
ity) interest rate effect, artificially extending the effective
duration of mortgages. 

Exhibit 10 shows a 0.4-year duration reduction
when moving from the BK model to the HW model, for
the current-coupon agency MBS. This may considerably
requantify the delta-hedging needs in secondary market-
ing and MBS portfolio management.

The table in Exhibit 10 summarizes comparative val-
uation results for 30-year fixed-rate agencies obtained

under the three different term structure models. In each
case the short rate volatility function is calibrated to ATM
swaptions. 

As one would expect, cuspy mortgages located at the
center of refinancing curve (“at-the-money” FNCL7)
are valued in a very close OAS range by all three mod-
els. When the prepayment option is out of the money (the
discount sector), this option will be triggered in a falling
rate environment. This sector therefore looks relatively rich
under the HW model, while the premium sector bene-
fits from using this model. As one could expect, the SG
model produces valuation results that are between results
of the HW and the BK models.

Although most mortgage instruments will look
shorter under the HW model, there are some notable
exceptions. As we point out above, the primary divergence
of HW from BK is found in differing volatility models.
Since mortgage interest-only (IO) classes and mortgage
servicing rights (MSR) have drastically changing convexity
profiles, they will also have unsteady exposures to volatil-
ity, i.e., vega. 

For example, vega is typically positive for an IO
taken from a premium pool (case 1), negative for that
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stripped off a discount pool (case 2), and about zero when
the pool’s rate is at the center of the refinancing curve
(cuspy premium, case 3). Therefore, the BK model will
generally overstate the rate sensitivity for case 1, under-
state it for case 2, and be close to the HW model in case
3 (see Exhibit 11). Keep in mind that an IO value, con-
trary to a regular MBS, increases with rates. Curiously
enough, the value of an IO stripped off the current-
coupon pool is always found to be higher under the HW
model than under the BK model, for all rate moves. 

These interesting findings, although affecting valu-
ation and delta-hedging, do not contradict what is well
known; MBS stripped derivatives and MSRs are influ-
enced greatly by prepayments and slightly by interest rate
models, provided that models are calibrated to the same
set of volatility benchmarks. The latter constraint is crit-
ical. As Exhibit 11 shows, the static (zero-volatility) val-
uation profile differs considerably from the option-adjusted
one. Buetow, Hanke, and Fabozzi [2001] provide a good
reminder to practitioners who may underestimate the
importance of model calibration. 

Can two different rate models be used for risk man-

agement: one for the assets, and another for the hedge?
Suppose a mortgage desk uses the BK model, while the
swaps desk trades with a skew. Unless the position is made
vega-neutral, differing volatility specifications in the mod-
els may considerably reduce hedge efficiency. 

NEGATIVE RATES

Knowing that interest rates have never been nega-
tive in U.S. history, we should question what detrimen-
tal effects might occur upon use of the Hull-White [1990]
model. Some have tried to estimate the probability of get-
ting negative rates in the model; this approach typically
creates needless concern. Indeed, the odds of such an event
are far from infinitesimal, but how badly can that dam-
age the value of an MBS? 

Answering this question may be simpler than it
sounds. Consider a LIBOR floor struck at zero. This
non-existent derivative will have a sure zero practical
value, but not under the HW model. We have priced such
a hypothetical instrument using assumptions that inflate
its value: market as of May 2002 (low rates, high volatil-
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ity), with model mean reversion set to zero. The volatil-
ity function s(t) is calibrated and extrapolated beyond the
ten-year expiration. 

The value of a zero-struck floor is found to be
insignificant for the average life range relevant to mort-
gage pricing (up to ten years). Thus, for the ten-year non-
amortizing floor, the value is 7 basis points, which is
equivalent to a 0.8 basis point error in the OAS. The error
grows with the horizon; the 30-year floor is priced at 35
basis points, which would lead to 2.5 basis points of spu-
rious OAS. 

We can conclude that the Hull-White [1990] model
is rather harmless. It will not lead to sizable mispricing even
in the worst mortgage-irrelevant case. This conclusion,
however, certainly merits periodic review. 

ENDNOTES

This article comes from several Andrew Davidson Co.
publications. It has greatly benefited from joint research with
Andrew Davidson (many views are as much his as the author’s)

and from the insightful comments of James Barrett, Robert Lan-
dauer, and Yung Lim. The volatility skew data used in the anal-
ysis are courtesy of Craig Lindemann and Krystn Paternostro. The
author thanks Jay DeLong and Steven Heller who incorporated
the new library of interest rate models into the OAS products.
Initial AD&Co. internal publication would not have been pos-
sible without the diligent production efforts of Ilda Pozhegu.

All interest rate models discussed in the paper are included
in AD&Co’s VectorTM suite of analytical models. They can
operate with time-dependent or constant volatility calibrated to
an arbitrary family of ATM swaptions.

1The CEV model is analyzed in many published sources,
including Wilmott [1998] and James and Webber [2000].

2This smile can be explained by the jumpy nature of the
underlying rate. For example, LIBOR caps are traded with a
considerable volatility smile because these rates are subject to
regulatory interference. Swap rates are much more diffusive than
jumpy, so swaption smiles are much less pronounced.

3This method of conversion is more accurate in match-
ing option values under the lognormal and normal versions of
Black-Scholes than the formal variance match. 

4A recent complex three-factor jump-diffusion develop-
ment by Chan et al. [2003] is a rare exception.
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