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O
ption-adjusted spread (OAS), while a much
better measure than yield or static spread,
still falls short in explaining the dynamics of
mortgage pricing. The standard OAS typ-

ically varies across instruments (pass-throughs, collater-
alized mortgage obligations, interest-only securities,
principal-only securities), coupons, prepayment option
moneyness, and pool seasoning stages. 

Premium and discount MBS are often priced at
wider OAS than the current-coupon issues. Premium
MBS and IOs stripped off premium pools are considered
hazardous, and their higher OAS reflect concerns of
understated refinancing. Naturally, the respective POs
look rich. In the discount sector, higher OAS reflects the
risk associated with possible overstatement of the hous-
ing turnover rate. 

Clearly, these market phenomena defeat the very
purpose of a constant OAS approach. Rich-cheap judg-
ments become inconclusive, and rate shock analysis can
produce inaccurate hedge ratios.1

Like Cheyette [1996] and Cohler, Feldman, and
Lancaster [1997], we attribute the OAS and its variabil-
ity to the prepayment risk premium, i.e., possible non-
diversifiable deviations of actual future prepayments from
a best guess prepay model’s forecast. 

It is the market’s fear of systematic bias in prepay-
ment forecasts that leads to a risk premium. If prepayments
were perfectly predictable, then an exact, even inefficient,
option exercise model should produce a zero OAS to an
appropriate option-free benchmark, just as options and

ALEXANDER LEVIN is head
of Valuation Development at
Andrew Davidson & Co.,
Inc., in New York City. 
alex@ad-co.com

ANDREW DAVIDSON is the
president and founder of
Andrew Davidson & Co., Inc.
andy@ad-co.com

Prepayment Risk- and
Option-Adjusted Valuation of MBS
Opportunities for arbitrage. 

Alexander Levin and Andrew Davidson



embedded option instruments with known algorithms of
exercise such as swaptions, callable agency debt, and cor-
porate bonds are all priced flat to their respective option-
free rate curves. 

While OAS varies widely among instruments, our
new spread measure, called prepayment risk- and option-
adjusted spread (prOAS, pronounced pro-A-S), accounts for
both option and prepayment risk. We posit that, on a
prOAS basis, all liquid agency MBS should be priced flat
to agency debentures, eliminating the variability found in
traditional OAS measures. Our method has its roots in the
capital asset pricing model (CAPM) and its extension, arbi-
trage pricing theory (APT), where return compensation
for risk and the concept of equivalent risk-neutrality play
key roles.

For unstructured pass-throughs, we propose a prOAS
valuation model that is armed with the power of back-
ward induction and allows for endogenously finding risk
measures and prices reflecting embedded prepay uncer-
tainty—in the form of return spread compensation—
computed for each investment period and level of inter-
est rates. All the required prices and risk spreads can be
found concurrently in the course of valuation performed
backward on a probability tree or a finite-difference grid. 

A price obtained in this manner will reflect the dif-
ferences in prepayment uncertainty without the need to
vary OAS across instruments. Values of IOs, POs, and
mortgage servicing rights (MSR) can be objectively
derived without knowing the OAS level for each instru-
ment; if necessary, traditional OAS can later be calculated
from the resulting prices. 

We prove that this process of explicit endogenous pre-
pay risk accounting is mathematically equivalent to risk-neu-
tral prepayment modeling. Such a model retains the structure
and the features of a physical prepay model, but operates with
risk factors stressed to their undesired directions (where
value deteriorates). A risk-neutral prepay model easily solves
the issue of CMO valuation under price of prepay risk
implicitly, without reliance on a non-feasible backward val-
uation. That is, we could refine the handling of CMOs by
replacing the time-consuming prepayment stress tests
described in Cohler, Feldman, and Lancaster [1997] with
risk-neutral forecasts.

We find that two prepayment risk factors are essen-
tial: the risk of refinancing understatement, and the risk
of turnover overstatement. Having calibrated prices of
these two prepayment risks to a set of widely traded
MBS, we can then produce prices for all other instruments
exposed to the same risks. Without two independent risk

factors, it would be impossible to explain why both dis-
counts and premiums of nearly all MBS collateral types
are traded at higher OAS than non-MBS instruments. This
paradox has apparently puzzled some authors; see Kupiec
and Kah [1999] and Gabaix, Krishnamurthy, and Vigneron
[2004]. A single-dimensional risk analysis would allow for
hedging prepayment risk by combining premium MBS
and discount MBS, a strategy any experienced trader
knows would fail.

PRICING PDE FOR 
OPTION-ADJUSTED VALUATION

We start with a hypothetical dynamic asset (mortgage)
whose market price P(t, x) depends on time t and one mar-
ket factor x. We treat x(t) as a random process with a (gen-
erally variable) drift rate m and a volatility s, disturbed by
a standard Brownian motion z(t):

dx = mdt + sdz (1)

We assume further that the asset pays the continu-
ous coupon rate c(t, x), and its balance B is amortized at
the l(t, x) rate, so that (∂B/∂t) = –lB. Then, one can
prove that the price function P(t, x) should solve the par-
tial differential equation (PDE):

(2)

A derivation of this PDE can be found in Levin
[1998], but it goes back at least to Fabozzi and Fong
[1994]. If our amortizing asset is an interest-only strip (IO),
the pricing equation is modified by excluding the l/P
term in the time return expression. 

A notable feature of the PDE (2) is the absence of
the balance variable, B. The entire effect of possibly ran-
dom prepayments is represented by the amortization rate
function, l(t, x). Although the total cash flow observed for
each accrual period does depend on the beginning-period
balance, construction of a backward induction  scheme will
require the knowledge of l(t, x), not the balance.

Pricing PDE (2) can be solved on a probability tree
or a finite-difference grid that has as many dimensions as
the total number of factors or state variables r, c, and l,
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or by Monte Carlo simulation. If the coupon rate is fixed,
and the amortization rate l  depends only on current time
(loan age) and the immediate market factor x, the entire
valuation problem can be solved backward on a two-
dimensional (x, t) lattice (the lattice will require more
dimension if the market factor x is a vector). 

To implement this method, we would start the val-
uation process from maturity T when we surely know that
the price is par, P(T, x) = 1 (zero for an IO), whatever
the value of factor x. Working backward, we deduce
prices at age t – 1 from prices found at age t. In doing so,
we replace derivatives in PDE (2) by finite-difference
approximations, or weigh branches of the lattice by explic-
itly computed probabilities.

Even for a simple fixed-rate mortgage pass-through,
though, total amortization speed l usually cannot be
modeled as a function of time and the immediate mar-
ket. Prepayment burnout is a strong source of path-depen-
dence because future refinancing activity is affected by the
past incentives. One can think of a mortgage pool as a het-
erogeneous population of participants with different refi-
nancing propensities. Some mortgagors have higher rates
or better credit or larger loans, or perhaps they face lower
regional transaction costs. Once they leave the pool,
future prepayment activity gradually declines. Hence, l
depends on historical market rates, making the valuation
problem path-dependent.

Instead of considering pricing PDE (2) for the entire
collateral, Levin [2001, 2004] proposes decomposing it into
two components, active and passive, differing in refi-
nanceability. Under the active-passive decomposition
(APD) model, mortgage path-dependent collateral can
be deemed a simple portfolio of two path-independent
instruments if:

• Active and passive components prepay differently,
but follow immediate market rates and loan age. 

• Any migration between components is prohibited. 

Alternatives and variations of this modeling struc-
ture include decomposition into several groups, as well as
stratifying the entire pool explicitly by available loan char-
acteristics  (see Davidson [1987], Davidson, Herskovitz,and
Van Drunen[1988], Hayre [1994, 2000], and Kalotay,
Yang, and Fabozzi [2004]). With a decomposed collateral,
it is possible to value mortgage-backed securities using
backward induction and, as we show further, explicitly
account for prepayment risk. 

VALUATION WITH PREPAYMENT RISK: 
BASIC CONCEPTS

Mortgage practitioners use the term prepayment risk
loosely. Most often they simply mean prepayment vari-
ability, but this is not what we attempt to capture. Indeed,
a large portion of prepayment uncertainty is associated
with interest rates and is thus explained by the prepayment
models that are inherent in modern option-adjusted spread
analytical systems. 

If prepayments were perfectly explained by a model,
there would not be any prepayment risk premium. An
option model coupled with an exact prepayment formula
should be able to deliver the right price for an agency-
backed (default-protected) MBS operating with OAS =
0. MBS would be valued flat to a known benchmark
curve—similarly to swaptions or callable notes, except with
a more complex exercise rule. 

Savvy market participants realize that a model can
tell only part of the prepayment story. Because a model
cannot predict prepayments exactly, we have unexplained
deviations of prepayment speeds above or below the mod-
el’s forecast, often called prepayment surprises or prepay-
ment errors. Not all prepayment surprise should require
market compensation. Random oscillations of actual pre-
payments around the model are diversifiable over time.
Prepayment errors typically seen in small pools are diver-
sifiable in large pools. 

We associate the notion of prepayment risk with non-
diversifiable uncertainty, common for the MBS market, sys-
tematic in trend and unexplained by an otherwise best-
guess prepay model. The varying level of OAS on differ-
ent instruments represents compensation for this risk. 

All the terms in pricing Equation (2) represent dif-
ferent sources of return, but none of them explicitly
quantifies prepayment risk. The entire compensation for
bearing this risk is hidden in the OAS term. 

How would we price prepayment risk? Suppose
that the prepayment rate l (t, x, x), depends on one
uncertain variable or uncertain parameter, x, independent
of the interest rate market. For the first conceptual illus-
tration, we assume x(t) is a Wiener process with zero
drift and volatility of sx, i.e., dx = sxdzx, and known ini-
tial value, x(0). According to the CAPM/APT, the risky
return should be proportional to the price volatility due
to the risky factor x. A common multiplier, px, called price
of risk, should apply to every asset exposed to the same
risk factor x. 

Using this notation, we therefore state that, for every

SUMMER 2005 THE JOURNAL OF PORTFOLIO MANAGEMENT



investment period, the expected return, r + OAS on the
left-hand side of PDE (2), should be adjusted for risk as:

Single-Period Expected Return = 

(3)

where the prepay risk- and option-adjusted spread (prOAS)
is a “risk-free” OAS; in the absence of any other risk fac-
tors, it should be zero for a properly selected pricing
benchmark. 

For example, we may assume that all agency MBS
should be valued flat to the same agency yield curve, on
this prepay risk-adjusted basis (prOAS = 0). For non-
agency MBS, this should certainly account for an addi-
tional risk associated with imperfect credit, and thus
becomes equal to the pure credit spread that can be
derived from the S&P or Moody’s rankings for a non-
agency pass-through or a particular CMO tranche.

The risky spread term, unlike the traditional OAS,
is not constant—it varies with interest rates and loan age.
It is also directional—it can be both positive and nega-
tive —depending on the sign of price exposure to the fac-
tor x. Since the market provides a return premium for
bearing the risk, it must make hedge instruments rich so
that a properly constructed x-neutral portfolio of an asset
and its hedge will earn nothing but risk-free OAS, i.e.,
prOAS. This is a traditional arbitrage argument that pre-
vents construction of a risk-free portfolio earning any
excess above the risk-free return (see Hull [2000]).

VALUATION METHOD 1: 
ENDOGENOUS ASSESSMENT OF RISK

Factor volatility sx and price of risk constant px are
defined outside the pricing model; they are common for
all instruments exposed to prepay factor x. Let us show
how price P(t, x; x) and its partial derivative taken with
respect to the risk factor, ∂P/∂x, denoted from now on
as Px, can be estimated internally and simultaneously in
the course of backward valuation. 

Suppose we have a path-independent instrument in
hand that is subject to pricing Equation (2), and the
amortization rate l depends on risk factor x. Let us first
multiply both sides of pricing Equation (2) by price P and
replace the traditional expected return, r + OAS, with the
risk-adjusted version from (3):
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Second, we take the first derivative of both sides of
Equation (4) with respect to x:

(5)

where for now we disregard the last term. 
We have here a system of two linear partial differ-

ential Equations (4) and (5) with two unknown func-
tions, P(t, x) and Px(t, x). It can be simultaneously solved
backward starting from the terminal (maturity T) conditions:
P(T, x) = 1, Px(T, x) = 0. This backward induction is car-
ried out on a usual (t, x)-grid or probability tree, for one value
of x = x(0), and separately for the active and passive part. 

Omission or approximation of the prepayment con-
vexity term, proportional to Pxx, avoids expanding the
pricing grid to the x-dimension. If we want to account
for the convexity term, we can do so by adding 1–

2
Pxxsx

2 to
the PDE, and then differentiate both parts twice while
neglecting (or approximating) the third derivative. We
would end up with a system of three PDEs, to be solved
on the same (t, x)-grid for three unknown functions, P(t,
x), Px(t, x), and Pxx(t, x)—see Levin [2004] for details.

VALUATION METHOD 2: 
EQUIVALENT RISK-NEUTRAL PREPAY MODEL

Pricing Equation (4) allows for an important finan-
cial interpretation. Suppose we still work with the tradi-
tional PDE (2), ignoring the price of risk but instead
letting the risk factor x drift with a negative px sx rate per
year:

(6)

It is easy to see that such a drift contributes a sys-
tematic return that is mathematically identical to the above
marked price of risk. Indeed, the full-time derivative term,
∂P/∂t on the right-hand side of Equation (2), will now be
composed of a ∂P/∂t term measured due to a simple pas-
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sage of time (i.e., with unchanged x) minus a px sx Px term
that comes from the Itô lemma applied to price P as a func-
tion of random variable x defined by Equation (6). This
leads directly to the pricing Equation (4) with risk.

We essentially arrive at a powerful risk-neutrality
concept for prepayment risk: Pricing with risk consider-
ation can be replaced with pricing without it, but with the
prepay risk factor x drifting in the undesired direction. The
rate of this drift is proportional to volatility sx, and the coef-
ficient of this proportionality is the price of risk, px. This
is the same concept we use in constructing term structure
models and pricing financial derivatives while taking for-
ward rates and prices into consideration. 

A prepayment model with the factor x set to drift
at the risk-adjusted rate can be logically called a risk-neu-
tral prepayment model, like all other financial models that
exploit this concept. It is therefore meaningless to won-
der how well such a model fits actual prepayments—it is
simply not meant to do this job. 

The risk-neutral drift for factor x can also be partly
caused by a model’s systematic bias. For example, the
market may expect the refinancing process to become
more efficient going forward than it has been. Mathe-
matically this bias cannot be distinguished from the price
of risk; it too results in a drift change for x. Using the risk-
neutral prepay model and the prOAS should lead to the
same valuation results as using an empirical prepayment
model with the traditional OAS. 

Mortgage market participants are accustomed to see-
ing differences in broker and analyst  forecasts of prepayments
and reports of OAS numbers for the same instruments and
market conditions. The transition from an objective model,
which often uses historical prepayments, to a risk-neutral
one that targets known prices for known instruments may
explain the disparities. Hence, risk-neutral prepay speeds
should differ less across firms. Since Black and Scholes,
risk-neutral modeling has been known for its ability to
reduce bias from systematic model-induced errors.

Although we have shown that a risk-neutral prepay
model is theoretically equivalent to the explicit risk assess-
ment performed for each investment period, from a finan-
cial engineer’s point of view there is a fundamental
difference between the two techniques. The explicit risk
assessment method computes the partial derivative Px
directly for each investment period and rate level. This task
is feasible if the entire valuation is performed backward,
and the MBS price and its derivatives with respect to risky
factor x can be found for every node of the pricing grid. 

For example, unstructured MBS can be priced this

way using the burnout-curing active-passive decomposi-
tion idea. CMOs, though, are heavily path-dependent
beyond burnout, and are therefore not subject to backward
valuation. For CMOs, the risk-neutral prepay model
would be an ideal method as it does not require comput-
ing Px directly. Letting the risk factor x drift in the unde-
sired direction naturally explores the price’s dependence
on x, without measuring Px explicitly.

We have so far assumed for simplicity that the risk fac-
tor follows a simple Wiener process. In general, the behav-
ior of prepayment factors is more complex. For example,
prepayments cannot grow more uncertain over time with-
out bounds, suggesting that the dynamics of risk factors
are mean-reverting. Yet purely diffusive behavior cannot
capture uncertainty in the starting values, i.e., risk present
at time zero. For example, the price of risk constant model
considers risky prepayment parameters where values are
constant but drawn from some distribution (see Cohler,
Feldman, and Lancaster [1997]). 

In general, we may extend the stochastic model for
factor x(t) to: 

(7)

where ax is the mean reversion parameter, and 
–x  is the

long-term equilibrium. The starting value is now con-
sidered uncertain and drawn from N[x0, sx0]. This mean-
reverting pattern will add more terms in pricing PDEs.
Also, the very last (time zero) step in backward valuation
will become a special one—to account for the time zero
risk and convexity.

Transforming model (7) into a risk-neutral form, we
again add a –px sx drift rate, and shift the initial condi-
tion by –px sx0:

(7-RN)

These are the generalized dynamics of the risk fac-
tor x(t) in a risk-neutral prepayment model. We see that
risk-neutrality lowers both the starting value and (in the
presence of mean reversion) the long-term equilibrium
for x(t). 
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A PROAS PRICING MODEL WITH
REFINANCING AND TURNOVER RISK

We have noted that both premium and discount MBS
are often traded at somewhat elevated option-adjusted
spreads. IOs stripped from premium collateral are priced pro-
gressively cheaper, on an OAS basis, than IOs taken from
discount or current-coupon collateral. We conjecture that
two major prepayment sources, the refinancing process
(driving the premiums) and the turnover process (vital for
understanding the discounts), are perceived as risky by the
mortgage market. To put this into simple practical terms,
there are two distinct market fears—refinancing under-
statement, and turnover overstatement. Hence, the model
of risk should be at least two-dimensional, which is a rather
simple extension of what we have considered so far. Allow-
ing the refinancing and the turnover processes to be ran-
domly scaled, we can model the total prepayment speed as:

SMM = rRefiSMM + tTurnoverSMM (8)

where the prepay multipliers, r and t, are considered
uncertain but centered on 1, and mutually independent.
Thus, instead of one hypothetical prepay risk factor x, we
have now two, r and t. 

If we use the active-passive (or other) collateral
decomposition, we apply the additive rule in Equation (8)
to each constituent piece. Every risk premium and con-
vexity cost found in pricing equations now becomes a sim-
ple sum of two terms associated with the refinancing risk
and the turnover risk. We assume known volatilities, sr
and st of two Wiener processes, r(t) and t(t), as well as
two prices of risk, pr and pt.

The conceptual risk-adjusted return formula in
Equation (3) now becomes

Single-Period Expected Return = 

(9)

where Pt and Pr stand for partial derivatives. Note the
negative sign for the refinancing risk. Since premium
fixed-rate MBS typically have Pr < 0, we can reward them
by either assuming a negative price of risk constant, πr,
or using the negative sign in the spread formula. Discount
fixed-rate MBS have Pt > 0, so the positive sign in (9)
produces positive return compensation for bearing
turnover risk. 
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Extension of the single risk factor is rather simple.
In the fundamental pricing PDE (2), we now replace the
expected return, r + OAS, with Equation (9). Thus mod-
ified risk-adjusted PDE will apparently include unknown
derivatives Pt and Pr. The next step is to differentiate this
equation with respect to each risk factor, r and t, thereby
adding two more equations and closing mathematical
construct. The total number of pricing PDEs to solve will
be either three with prepay convexity cost disregarded (for
P, Pr, and Pt), or six with prepay convexity cost included
(for P, Pr, Pt, the second derivatives, Prr, Ptt, and the
mixed derivative Prt ).2

For this two-factor prepay risk setting, a risk-neu-
tral prepay model remains an attractive alternative method
of computing prOAS. We accelerate refinancing (set r
drifting above 1 at the rate of πrsr), and retard turnover
(set t drifting below 1 at the rate of πtst). For a frame-
work that combines single (time-zero) jump and mean-
reverting diffusion, these risk-neutral drifts for the
refinancing and the turnover multiples are shown in
Exhibit 1. We can split the risk between jump and diffu-
sion, and alter the rate of reversion. 

The dynamics shown in Exhibit 1 associate about
half of refinancing risk with the refinancing uncertainty
present at time zero; the other half appears gradually. We
are generally more certain about the starting turnover rate,
and it may take a while before future macroeconomic con-
ditions will alter it, so a smaller portion of the total drift
is present at time zero for the turnover risk component.

DETERMINING PRICES OF RISK:
CALIBRATION TO TBAS

Our discussion of practical steps in using the prOAS
model includes the problems it may address and the val-
uation results it generates. Assuming we know volatility
and mean-reversion parameters for the risk factors r(t) and
t(t), we need to find market levels for (calibrate) the price
of risk constants, πr and πt. We can tune these constants
to match market prices (or the OAS), for a range of
actively traded securities. 

To find these parameters, we first need to define the
appropriate target for prOAS. The target prOAS should
reflect the spread on a similar security with no prepayment
uncertainty. While assuming a zero prOAS to the swap
curve may be appropriate, we find that agency debentures
are a better benchmark, as they have the same credit
guarantee as agency MBS and entail no prepayment
uncertainty.3
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An example of the calibration results is shown in
Exhibit 2. We use eight TBA instruments priced on
August 29, 2003, with net coupons ranging from 4.5%
to 8.0%. On that day, the mortgage current coupon rate
was 5.67%, so there were both premiums and discounts
in our sample. First, we measure OAS numbers using the
traditional valuation method, without any risk adjust-
ment (black bars). We then use the prOAS pricing method
and select the price of risk constants πr and πt so as to min-
imize the prOAS levels (grey bars). The calibration works
fairly well across the range of TBAs, with a 3-4 basis point
mean-squared accuracy in reaching the debenture (zero)
prOAS target. 

The lines drawn in Exhibit 2 show the principal
components of OAS, i.e., OAS compensation due to
refinancing risk and turnover risk. The direction of both
lines is apparent, but some important points should be
made. For one, the turnover line almost never leaves pos-
itive territory.  Discounts would certainly lose value with
slow turnover, but why will premiums suffer? The very
steep yield curve is primarily responsible for this effect;
slowing turnover pushes cash flows to longer maturities

with higher discount rates. It also slightly inflates the
time value of the prepayment option. 

The best mix of principal components is found
assuming that prOAS is linear in prices of risk. Hence, our
actually achieved prOAS levels are suboptimal (white bars).

This calibration exercise clearly shows the value of
the two-risk factor model for several reasons. In a single-
risk factor model, prepayment risk is associated with
either global acceleration or deceleration, regardless of the
source. First, in seeking a single price of risk, it would be
impossible to move the premium OAS levels toward the
zero level without moving the discount OAS levels away
from zero, and vice versa. Second, for any market condi-
tion, a single-risk factor model would allow one MBS
coupon (perhaps, interpolated) to be prepay-neutral, i.e.,
not exposed to the overall prepay scale. Hence, the the-
ory requires such an MBS be traded at a zero, not a pos-
itive, OAS, which is not the case for the market shown
in Exhibit 2. Third, as we mentioned in the introduction,
a single-factor risk model leads to an unworkable single-
factor hedge strategy. 

Will the parameters of the prOAS model be stable
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over time, or do we need to calibrate them on a daily basis?
While one goal of physical models is to stay steady, the
concept of risk-neutrality is linked to changing market
prices for benchmark instruments, which reflect the
dynamics of market preferences for risk. If the market
prices for TBAs exhibit OAS tightening or widening
over time, they are sending us a message of changing
perceptions of prepayment risk. 

This conjecture is borne out when we examine the
trends in results of the calibration of the prices of risk con-
stants, πr and πt, at different dates, as shown in Exhibit
3. These parameters are not constant and even show an
exaggerated reaction to interest rate dynamics. 

When rates dropped to their 40-year record lows
(May-June 2003), refinancing fears reached panic stage.
High-premiums (e.g., FNCL7.5 and FNCL8.0) did not
appreciate, which meant that their agency OAS levels
increased to 100 basis points and above to absorb much of
the rate plunge. During that period, the calibrated price
of refinancing risk surged. The calibration revealed no
concern about housing turnover, as the discount sector had
evaporated. 

When rates moved back up through summer 2003,
the refinancing wave started to cool off; large volumes of

freshly originated FNCL4.5 and FNCL5.0 became dis-
counts. This was when the turnover concerns became
apparent. The rest of the time we witnessed a general sta-
bilization in risk prices. 

In our opinion, it is dynamics of interest rates, not
their levels, that induce exaggerated prices of risks. Both
irrational pricing and sharp changes in the mortgage mar-
ket composition may explain this phenomenon (see also
Gabaix, Krishnamurthy, and Vigneron [2004]).

Comparing the heights of the bars in Exhibit 3, one
might conclude that the MBS market is systematically dom-
inated by refinancing fears, not turnover fears. This is likely
a misperception. As Exhibit 2 shows, the principal com-
ponents of OAS are of comparable size even when πr is sig-
nificantly greater than πt. When rates rise, prices for discount
MBS can suffer substantial drops that are limited by and
therefore depend on the turnover speed. 

VALUATION OF MBS STRIPS WITH PROAS

In the traditional OAS valuation, either price or
OAS should be given as input. Under prOAS, the role of
OAS is performed by a better-defined measure. The goal
of prOAS pricing is to eliminate differences in OAS
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among instruments that are exposed to prepayment risk. 
As we asserted earlier, the prOAS measure should

value agency MBS flat to agency debentures. Therefore,
once the risk factors are given their stochastic specifica-
tions (jump sizes, diffusive volatility, and mean reversion)
and the prices of risk constants are determined, we can
value any agency MBS or its IO and PO strips much like
swaptions, i.e., by looking at the benchmark rate and
volatility structure, but without any knowledge of the tra-
ditional OAS.

Exhibit 4 shows valuation results for agency trust IOs
using prices of risk constants, a high πr, and a near-zero
πt, obtained from the calibration to Fannie Mae TBAs on
May 30, 2003. Application of the prOAS method first
leads to values that are then converted into conventional
OAS measures.4 The prOAS model explains IO cheap-
ness (and therefore PO richness) naturally, and correctly
predicts an OAS level of (and above) 1,000 basis points. 

As POs stripped off premium pools should be looked
at as hedges against refinancing risk, they have to be
traded rich according to arbitrage pricing theory. Our
prOAS model successfully confirms this in that virtually
all OAS for trust POs are deep in negative territory (not
shown in Exhibit 4). Results in Exhibit 4 also provide

some degree of confidence for managers of mortgage
servicing rights (MSR) portfolios (not actively traded or
frequently quoted)—they can use the prOAS measure to
better assess the risk of their portfolios. 

Exhibit 3 shows in a historical risk chart that on May
30, 2003, the entire risk perception was evolving out of
a refinancing scare. Exhibit 4 shows that both the TBA
market and the trust IO market agree with one another
in incorporating this risk into pricing.

In the summer months of 2003, rates rose sharply,
pushing lower-coupon MBS (4.5s and 5.0s) into discount
territory. Exhibit 2 confirms that by the end of that sum-
mer the refinancing fear had dissipated, making room for
turnover concerns (slower-than-modeled turnover results
in a loss for a discount MBS holder). It is not surprising
that the price for turnover risk, virtually non-existent in
May 2003, grew considerably (Exhibit 3). 

What if we apply prices of risk calibrated to the
August 29, 2003, TBA market to value trust IOs? Exhibit
5 shows two stages in application of the prOAS model,
valuation with refinancing risk only, and with total risk. 

Comparing the market prices and related OAS (light
grey lines) with the valuation results under the prOAS
model with refinancing risk only (darker grey lines), we
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see that the single-risk factor prOAS model just slightly
overstates values compared to the actual market. It shows
a directionally correct OAS tendency (tighter spread for
discount IOs, wider for premiums) and magnitude. 

Disaster strikes when we add the true turnover risk
calibrated to the TBAs (black lines). Since IOs can be used
as hedges against turnover risk, theory says they should be
penalized, not rewarded. An almost constant 250-basis
point OAS reduction is seen as the result. 

On that day, the actual IO market did not seem to
appreciate this theory. Price quotes were much lower than
the full two-risk factor prOAS model suggests they should
have been. According to the APT, such mispricing should
allow construction of a fully hedged risk-free portfolio that
earns more than the risk-free rate. 

After analyzing a number of trading days, we believe
that the TBA-IO dislocation coincides with a sharp surge
of rates when the IO market, driven predominantly by the
acceleration fear, misses the hedging aspect against slow-
ing down housing turnover. In those market conditions,
there is a theoretical opportunity to create a dynamically
hedged mortgage portfolio that is prepay-neutral and earns

an excess return over funding rates. Recognize, however,
that the market value of this portfolio would remain
exposed to the risk of further TBA-IO dislocation.

MODERNIZED GREEKS

Valuation adjusted for prepayment risk leads to dif-
ferent rate sensitivity from the traditional approach. Intu-
itively, premium pass-throughs become less rate-sensitive
because their risky spread absorbs interest rate moves fol-
lowing the prepay option moneyness. Indeed, any rate
drop elevates the refinancing risk and thereby inflates the
traditional OAS; any rate rise reduces the risk and com-
presses the OAS. 

Since the discount MBS react inversely, they are
more rate-sensitive under the prOAS method than under
the constant OAS risk assessment. A flat OAS profile for
the current-coupon to cuspy-premium TBA sector seen
in Exhibit 2 suggests that the constant OAS valuation is
a valid way to assess their rate sensitivity. 

All these findings (confirmed in Exhibit 6) can be
explained even more easily by the equivalent transition
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from the objective to the risk-neutral prepayment model,
faster for premiums and slower for discounts. 

Exhibit 7 compares valuation profiles for an MSR
stripped off a 6.5% near current-coupon pool. We see that
a constant OAS valuation systematically understates rate
sensitivity for all rate levels by as much as one-third. This
implies, for example, that MSR managers would under-
hedge if they used a traditional constant OAS duration. 

CONCLUDING REMARKS

The two-risk factor prOAS valuation approach that
we analyze is a well-defined extension of the traditional
OAS method that draws its roots from arbitrage pricing the-
ory. It successfully explains many phenomena in the MBS
market such as OAS variability among MBS coupons and
instrument types, the IO-PO pricing paradox, and the
divergence of practical durations from the theoretical. At
the same time, the method points to some lacks in the mort-
gage market that reveal inefficiencies and possible arbitrage. 

Two particular anomalies—missed hedging power
of IOs against turnover risk, and exaggerated dynamics of
risk prices—let savvy investors construct prepay risk-
neutral MBS portfolios that earn excess returns and con-
scientiously speculate on taking a risky position.

ENDNOTES

The authors thank Jay Delong for help in integrating the
model into their valuation system; Dan Szakallas for tuning and
optimizing the prepay model to historical prepay data; William
Searle for model implementation; and Ilda Pozhegu for pub-
lication help. This article has benefited from the comments of
Lily Chu, Frank Fabozzi, Yung Lim, Anthony Sanders, and
William M. Storms. 

1In addition, holding OAS constant for the purpose of
computing duration and convexity for an MBS pass-through
and its strip derivatives (IO and PO) is inconsistent from a sim-
ple mathematical view. When rates change, so do values of the
IO and PO, and thus their weights in the pass-through change.
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2The mixed derivative term appears in the model even
if risk factors are assumed independent.

3Arguably, TBAs should trade even richer than the agency
debt curve because they 1) have superior liquidity, and 2) are
collateralized, leading to a perception of higher credit quality.
While a typical MBS is backed by properties, there is no for-
mal legal mechanism that provides any enhanced protection of
an agency MBS beyond the corporate guarantee of the agency.

4To account for the liquidity difference between IOs and
TBAs, we apply 25 basis points prOAS.
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